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The images and sounds that we perceive undergo subtle but 
geometrically consistent changes as we rotate our heads. Can 
we use these cues to learn audio and visual models of space?
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Learning representation via spatialization
We learn an audio-visual representation that conveys spatial cues by solving 
a cross-view binauralization task.
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Estimating pose and localizing sound
Cross-modal geometric consistency:

Lgeo = min
r̂s∈{rs,Qrs}
r̂t∈{rt,Qrt}

‖r̂s −Rs,tr̂t‖
2, Q =

[

1 0
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Cross-modal geometric consistency. When the camera
is rotated, the sound source ought to rotate in the opposite
direction (Fig. 2b). For example, a 30� clockwise camera
rotation should result in a 30� counterclockwise rotation in
sound direction. Such a constraint could be converted into a
loss:

Lrot = krs � Rs,trtk2. (6)

However, a well-known ambiguity called front-back con-
fusion [77, 25] exists in binaural sound perception: one
cannot generally tell whether a sound is in front of the view,
or behind them. To address that, we use permutation invari-
ant training [100] (PIT), and allow the model to use either
the predicted sound direction or its reflection about the x
axis without penalty. This results in the loss:

Lgeo = min
r̂s2{rs,Qrs}
r̂t2{rt,Qrt}

kr̂s � Rs,tr̂tk2, (7)

where Q =


1 0
0 �1

�
reflects the sound direction.

As a consequence of this ambiguity, there are also two
possible solutions for the visual rotation model, since the
visual rotation matrices can be mirrored about the x axis.
For example, one can create a solution with equal loss by
multiplying the rotations and sound directions by Q. We
discuss this ambiguity in more depth in Sec. 4.4.

Incorporating binaural observations. Without additional
constraints, the solution is ambiguous, and may collapse into
a trivial solution (e.g., predicting zero for all three angles).1
To avoid this, we force the model to agree with a simple bin-
aural cue based on interaural intensity difference (IID). We
predict whether the sound is to the left or right of the viewer,
based on whether it is louder in the left or right microphone:
d = sign(log

���A
L

AR

���), where |A| is the magnitude of the spec-
trogram A. We perform this left/right test at each timestep
in the spectrogram and then pool via majority voting (see
supplementary for details). We penalize predictions that are
inconsistent with these “left or right” observations:

Lbinaural = LBCE (sin ✓i, di) , (8)

where LBCE is binary cross entropy loss.

Encouraging symmetry. To help regularize the model, we
also add symmetry constraints. For sound localization, swap-
ping the left and right channels of the audio ought to result
in a prediction in the opposite direction since the binaural
cues are reversed. For rotation estimation, the relative pose
between images s and t should invert the pose from t to s.
We encourage both constraints via a loss:

Lsym = |✓ + ✓flip| + |�s,t + �t,s|, (9)

1Work on self-supervised SfM has similar ambiguities [104], and deals
with them by adding analogous constraints, such as photometric consistency.

Figure 3: Cross-view binauralization architecture. We take a
mono spectrogram as input and fuse the audio and visual features
from the audio and visual encoder respectively to synthesize the
binaural spectrogram at the target viewpoint.

where ✓flip is the prediction of sound angle ✓ using audio
with swapped audio channels, and �s,t and �t,s are the pre-
dicted rotations between cameras s and t.

Overall loss. We combine these constraints to obtain an
overall loss:

L = �Lgeo + Lbinaural + Lsym, (10)

where � is the weight for the geometric loss.

4. Experiments
We have introduced a self-supervised method to learn

camera pose and sound localization from audio-visual data.
In experiments, we first evaluate how well our learned repre-
sentation captures spatial information. We then evaluate how
well our method learns camera pose and sound localization
by comparing it with baselines. Finally, we show general-
ization to indoor panorama images Stanford2D3D [6] and
in-the-wild binaural audio [17].

4.1. Implementations
Visual pose encoder. We follow recent pose estimation
work [9, 43] and build a Siamese-style visual pose network
fv with ResNet-18 [38] as the backbone. We compute dense
4D correlation volumes between the features from the third
residual layer and then encode them by convolution layers.
We resize images to 320 ⇥ 240 and encode a pair of im-
ages into 512-d features. We use an MLP gv to map visual
features to 1-d logits for our SLfM models.

Binaural audio encoder. We obtain binaural audio em-
beddings fa(·) using ResNet-18 [38] that operates on spec-
trograms. We covert the two-channel waveform of length
L to a spectrogram representation of size 256 ⇥ 256 ⇥ 4
using short-time Fourier transform (STFT), where we keep
both the magnitude and phase of spectrograms. We extract
512-d features of binaural sound with fa and map them to
1-d logits using an MLP ga.

Overall loss:

φs,t = θt − θs

Source view audio
Audio Encoder

fa

Source view

Target view

Visual Encoder

Correlation

fv

Target view audio
Audio Encoder

fa

θs

θt

φs,t

Idea: learn to enforce cross-
modal consistency. Audio and 
visual predictions should agree 
with each other:


• Audio model: predict sound 
direction from stereo audio.


• Visual model: predict camera 
rotation from two images.

We propose SLfM: jointly learning sound direction and 
camera rotation from multi-view audio-visual data.

φs,t = θt − θs

θi = ga (fa(ai)) , ri =
[

cos θi sin θi
]Tφs,t = gv (fv(vs,vt)) , Rs,t =

[

cosφs,t − sinφs,t

sinφs,t cosφs,t

]

Lbinaural = LBCE (sin θi, di)
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